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Abstract-This study proposes a total solution of an interactive approach for integrated multilevel 
systems or multilevel programming problems (MLPPs) in a fuzzy environment. Simulating the actual 
decision-making process of the hierarchical structure of an organization, MLPP is a practical and 
useful approach to decentralized planning problems. Because of the complexity of the problems, 
there are no traditional techniques efficient enough to obtain the numerical solution of a reasonable 
size problem. Hence, Shih et al. [l] propose a fuzzy approach for MLPPs, to simplify the complex 
structure, which is proven to be feasible and efficient. The imprecise MLPPs will be involved when 
the coefficients of MLPPs cannot be estimated exactly. Because of such a complicated situation in the 
real world, we will take advantage of an interactive technique to improve the flexibility and robustness 
of its decision through progressive articulation of decision information from decision makers (DMs). 
Roughly speaking, there are two interactive procedures for imprecise MLPPs: inside loop and outside 
loop. The former is for the preference of the DMs, represented by fuzzy membership functions; the 
latter for the imprecision of coefficients, described by possibility distributions or cut-off values. Special 
considerations will be given to the compensatory operator, positive and negative ideal solutions, risk 
attitude, and c-constraints. In the final section, linear-programming type and network-flow type of 
imprecise MLPPs will be solved separately as an integrated multilevel system. @ 2002 Elsevier 
Science Ltd. All rights reserved. 

Keywords-Interactive procedure, Multilevel programming problem, Possibilistic measures, 
Cut-off value, Risk attitude, c-constraint, Membership function, Compensation. 

1. INTRODUCTION 

The interactive technique seems to be a step in the right direction to manage complex systems 

with dynamic consequences, in which decision information can be obtained via its process to re- 

lieve decision burden, thus, ensures a rational decision. The technique provides a learning process 

about the system, whereby the decision makers (DMs) can learn to recognize good solutions, the 

relative importance of factors, and finally design a high-productivity system [2]. According to 

Aksoy [3], five major advantages of the interactive technique can be summarized as follows: 
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interactive technique does not require preference information, which is rather difficult for 

the DMs to provide; 

the DMs have greater confidence in the solution obtained; 

the algorithm allows an effective division of labor between the DMs and the analysts/ 

machines; 

the DMs can clearly learn about their preferences; and 

the interactive approach would extenuate problems associat,ed with mismatches between 

the DMs’ perception and the formalization of the problem through a computerized algo- 

rithm. 

techniques have been developed for multiobjective decision making (MODM), fuzzy 

MODM, and possibilistic MODM to overcome the conflict of multiple noncommensurable ob- 

jectives [4,5]. Thus, it is natural to consider these techniques for improving decision quality of a 

more complex multilevel system or multilevel programming problem (MLPP). 

hiIultileve1 techniques are developed to solve decentralized planning problems, with multiple 

DMs in a hierarchical organization, where each unit or department independently seeks its own 

interests, but is affected by the actions of other units through externalities. The MLPP can 

be encountered in almost any hierarchical organization such as government agencies, profit or 

nonprofit organizations, manufacturing plants, and logistic companies. The simplest MLPP 

formulation, a bilevel case, is illustrated as follows (61: 

MElX 
xl fl(X1, x2) = &Xl + cy2x2 (upper level) (1) 

where x2 solves, 

fi(Xl, x2) = &Xl + &2 (lower level) 

s.t. (x1,x2) E x = {( x1,x2) I Alxl + A2x2 I b and x1,x2 2 O}, 

where cll, ~12, ~21, ~22, and b are linear vectors, Al and A2 are linear matrices, with X denotes 

its constraint set. 

Traditional approaches, including vertex enumeration and transformation approaches, cannot 

provide an efficient algorithm to solving reasonably practical size problems. The simplest bilevel 

problem with linear form is NP-hard and nonconvex [7]; and more seriously, its solution may not 

exist under the best of circumstances [S]. Therefore, Shih et al. [I] introduce a fuzzy approach 

for MLPP to simplify the complex nested structure by utilizing the concept of MODM and the 

degree of satisfaction, in terms of fuzzy membership functions. And these in terms transfer the 

goals and decisions to a lower level in a top-down fashion for simulating the hierarchical decision 

making process. The so-called supervised search approach has been proven to be feasible and 

efficient. 

The recommended process generates an auxiliary lower-level problem of expression (1) as fol- 

lows. 
Max X, 

s.t. x E x, 

PLfl(fl(X)) = ‘:;i”‘f’T1 2 A, 

p,l(xl) = [Xl - ;xy -lPl)l > XI 
1 

Pl 

ILZl(X1) = 
[(x? + P2) - x1] > xI 

PfI(f2(X)) = i$+;] ‘A, 

, 

2 2 

(2) 

X E [0, l] for degree of satisfaction, 
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where pi and ~2 are the two-side tolerance for decision vector xi on LHS and RHS, respectively. 

And xy is the most preferred decision of xi. f: and f; represent the positive ideal solution 

(PIS) and negative ideal solution (NE), respectively. 

Furthermore, through utilizing preference and possibilistic concepts with modification [9], the 

process has been extended to solve an imprecise minimum-cost flow (MCF) problem, a general 

form of network flow problems. In addition, the compensatory behavior in the MLPPs is also 

investigated for managerial decision making [lo]. In fact, the new development has been involved 

in two categories of fuzzy set theory, fuzzy programming and possibilistic programming. And 

the techniques in both can be beneficial to solving MLPPs. Note that the interactive approach 

for MLPPs actually involves multiple DMs, other than traditional approaches (e.g., [11,12]), and 

searches of a compromise in a continuous space. 

Although the nested structure of the MLPP, expression (l), has been simplified through fuzzy 

concept, there are still many realistic decision situations under investigation. Inspired by the 

achievements of interactive techniques, we will introduce the techniques with dialog to the DMs 

to get their preference information. Each of the characteristics will be tackled with one concept, 

respectively, in the fuzzy environment, and the realistic problems can be controlled in a unified 

process. Furthermore, a series of the dialog between DMs and analysts/machines is continued for 

accounting for learning, adaptive and dynamic natures of the problems. Accordingly, a preferred 

or compromised solution can be obtained in the end. 

In the following sections, we first consider explicit trade-off information for the interactive 

procedure. The decision information focusing on preference and vagueness is explored by utilizing 

the techniques in fuzzy programmin g and possibilistic programming. Arranging the information 

in a logical order, an interactive procedure will be proposed. There are mainly two loops for 

interaction: the inside one for preference and the outside one for vagueness of the problems. 

Moreover, two types of the imprecise MLPPs are solved separately in illustrated examples. In 

the final section, we will make some concluding remarks and future directions. 

2. DECISION INFORMATION FOR INTERACTION 

Interactive procedures have met with a great success over past three decades. Although each 

interactive technique has specific characteristics in MODM, two main conceptions, a search- 

oriented conception and a learn-oriented conception, should be distinguished to classify interactive 

procedures. After investigating ten interactive procedures, Vanderpooten and Vincke [13] infer 

that the most recent approaches aim at including both aspects. Hwang and Masud [4] point out 

that some interactive techniques require explicit information regarding the trade-off between the 

attainment levels of objectives at each stage; others require the implicit trade-off information in 

the form allowing the DMs to indicate acceptability of the current achievement level. In general, 

the interactive procedure looks for the trade-off among objectives or searching for a satisfactory 

nondominated point due to conflicting multiple objectives. Nevertheless, the process will be 

complicated when fuzzy information is involved (see [5,14]). But the interactive techniques in 

fuzzy programming and possibilistic programming indeed offer a clue to resolve decentralized 

planning problems. 

Despite many developments of interactive techniques for MODM in the past, only a few de- 

volpments for hiILPPs were made until now. Based on the concepts of satisfactoriness of both 

levels and direction vector for improvement, Shi and Xia [15] suggest an interactive approach for 

nonlinear bilevel multiobjective decision making problem. But the direction vector is unneces- 

sary for a linear case due to the complexity. At the same time, Sakawa et al. [16,17] develop an 

interactive procedure for MLPPs, but the procedure diverts the difficulties of controlling decision 

variables and what is more, the procedure is similar to the interactive approach in MODM. Thus, 

a simple and explicit trade-off within the feasible region would be expected for solving MLPPs 

in a dynamic environment. 
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In the following discussions, various aspects of the decision information for interaction include: 

compromise solutions through PISs/NISs [4], confidence of imprecision by possibilistic theory [18], 

compensatory operator [19], risk attitude [20], and s-constraints constraint [21]. The information 

will be discussed as the necessary elements for interaction. 

2.1. Compromise Solution 

As multiple conflicting and noncommensurable objectives always exist, the solving procedure 

is to look at a compromised or satisfactory solution among the nondominated frontier (41. To 

reach a compromise, the preference will refer the following: 

(a) reference points, i.e., the concept of an ideal or worse system; 

(b) distance, i.e., location of alternatives away from reference points; and 

(c) normalization, i.e., the process to eliminate nonmeasurability among objectives [22]. 

These references are common for managing MODM [4]. 

The above essences are also the core of fuzzy MODM. The reference points PISs/NISs and the 

normalization play the key roles of establishing fuzzy membership functions in terms of degree of 

satisfaction in DMs’ mind. Then the value of 0 increasing to 1 describes the full dissatisfaction 

gradually transiting to the full satisfaction, which described by a linear membership function, as 

in expression (2) [l]. In addition, the reference points have also been the anchors for setting the 

upper and lower bounds in the interactive steps. 

2.2. Confidence of Imprecision 

Analogous probability for uncertain information, possibly is one major concept in fuzzy sets, 

and it originally tries to describe fuzziness or imprecision of natural languages [23]. For compar- 

ison of two fuzzy intervals P and Q, Dubois and Prade (181 propose four fundamental indices, 

Pos(bi > &), Pos(bi > &),Nec(& > &), and Nec(& > &), where bi and Ri are variables 

whose domains are constrained by pp and pQ, respectively. The relation among these four: 

PoS(bi 2 &) 2 { maxPos(b, > iii), Nec(b, 2 &)} L {min{Pos(& > &), Net@, 1 &)} 2 

Nec& > iii), describes the imprecise ranges in terms of confidence of imprecision in DMs’ mind. 

The comparison of fuzzy numbers under these four indices is depicted in Figure 1. 

For mathematical programming, Buckley [24] proposes an evaluation, through the operation 

expressed as triangular fuzzy membership functions, which seek the minimum of all possibili- 

ties in its objective and decision spaces. Negi [25] further extends the problem to k-dimension 

objective space with minimization and maximization based on (strict) exceedance possibility 

whose distributions are trapezoidal shapes, e.g., (bii, biar bisy bi4) with four numbers. For the ith 

constraint, with trapezoidal fuzzy numbers (TFNs), xi cj( a I aig,aij3,aij4)xj C (bilrbi2,bi3, ij , 
bid), the measure of exceedance possibility is to look for maximizing 6i within the range of 

bi3 5 Cj aijzxj and bid 2 Cj aijlxj. Accordingly, for the kth objective with a trapezoidal 

fuzzy cost, zk = Cj(Ckji, c&?, ckjs, ckjd)xj, the problem searches for minimizing the LHS of 

TFNs OkI = (zk - Cj CkjlXj)/(Cj ckj2xj - Cj ckjlxj) or maximizing the RHS of TFNs ok2 = 

(Cj ckj4xj -Zk)/(Cj ck34xj - cj ckjsxj). The measure of strict exceedance possibility hunts for 

maximizing 6i within the range of bi3 5 Cj aij4xj and bid 2 C, aijsxj, and the objective is the 

same as before. Furthermore, the above four indices can be applied to mathematical program- 

ming with TFNs, and the choice will depend on the confidence of imprecision in DMs’ minds. 

Besides, the cut-off values will be another factor affecting the imprecision range. Hence, Negi [25] 

tries to linearize the process of possibility comparison by a fixed value between 0 and 1, i.e., 

cut-off value cr. 

Similarly, the calculation can be expanded for another two possibilistic indices. For the ith con- 

straint with TFNs, xi Cj(aijr, aij2, aijs, aijd)x, 5 (bil, bi2, bi3, bi4), the measure of exceedance 

necessity to look for maximizing 6i within the range of bil 5 Cj aij2xj and bi2 > Cj aijlxj. 
And the measure of strict exceedance possibility is in search for maximizing bi within the range 
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of bil < Cj aij4xj and bi2 2 Cj aij3xj. The objective is taken from TFNs which are defined the 

same as before. 

However, there are two problems in applying this formulation for network flow problems. The 

first one, the number of constraints will be increased a lot, and the second one is that there exists 

a contradiction in defining the fuzzy capacity constraints. To avoid these difficulties, Shih and 

Lee [9] adopt the concept of fuzzy range instead of the possibilistic range in formulating the arc 

capacity, where the value of the fuzzy range is controlled by the same cut-off values. Therefore, 

two types of problems, linear-programming type and network-flow type, can be considered at the 

same parameter for manipulating the imprecise of confidence. Then four possibilistic indices and 

cut-off values will be the information for interaction. 

2.3. Compensatory Operator 

In fuzzy mathematical programming, Zimmermann [26] has followed the decision as the in- 

tersection of goals and constraints, and the best decision will be the union of all decisions, i.e., 

pD* = max{min(pG,pc)}. This operation is accepted as a general tool for manipulating the 

linear programming and MODM problems. However, the interpretation of such a decision as an 

intersection or union will result in no compensation (under-achievement) or full compensation 

(over-achievement). Managerial decisions always have some kind of compensation between either 

ril ri2 ri3 ri4 

(a) Exceedance possibility, Pos[& 2 &] > 0. 

bil bi2 bti b. 14 

rii ri2 ri3 ri4 

(b) Strict exceedance possibility, PO& > Ri] > 0. 

Figure 1. Fuzzy number comparison through four possibility indices. 
(1) Pos[& 2 &] = 6i = (bid - r;l)/[(bi4 - bi3) + (T~Z - ril)] in (a), where bi3 5 ri2 
and ril 5 bid. 
(2) PO& > iii] = 6; = (bi4 - ri3)/[(bi4 - bi3) + (vi4 - ri3)] in (b), where bi3 5 7-i4 
and ri3 5 bid. 

(3) Necki 2 &] = bi = (bi2 - Til)/[(Tia - Til) + (bi2 - &I)] in (c), where bil 5 Ti2 
and ril 5 bi2. 
(4) Nec~i 2 Ri] = bi = (bi2 - ris)/[(rid - ris) + (6i2 - bil)] in (d), where bil 5 vi4 
and Ti3 5 bi2. 
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ril ri2 ri3 ri4 

(c) Exceedance necessity, Nec[b, 2 I&] > 0. 

rii ri2 ri3 ri4 

(d) Strict exceedance necessity, Nec[b, > iit] = 0 (no intersection here). 

Figure 1. (cont.) 

different degrees of goal achievement or decision restrictions [27]. It is calculated through the 

convex combination of goal achievement or decision restrictions. Afterwards, Werners [19] pro- 

poses two operators which both lead to formulations in linear form with respect to the empiricai 

data. However, “fuzzy and” p,,d(= yX + (1 - y) C, X,/m, i = 1, . . , m) will be easier to handle 

and is applicable to various types of hierarchical structure of MLPPs [lo]. And the grade of 

compensation is another information for interaction. 

2.4. Risk Attitude 

Another characteristics are the risk attitude of DMs, which can be divided into three cate- 

gories: risk-averse, risk-seeking, and risk-neutral [28]. All these are to describe more or less of 

the uncertainty with respect to the expected value of the payoff. Adopted from utility concept or 

preference functions, these three classes of behavior can be simply elicited by the fuzzy member- 

ship function, four constrains in expression (2); with the power of 2, l/2, and 1, respectively, [20]. 

In fact, the risk-neutral behavior is the same formula as in expression (a), which is a linear mem- 

bership function. And risk-averse characteristic is depicted with a convex shape, and risk-seeking 

characteristic is depicted with concave shape. The former is much optimistic than the latter in 

decision making. Then the three characteristics will be integrated into the procedure for choice 

through different membership functions. 

2.5. E-Constraints 

E-constraint method originally allows the analysts the ability to specify bounds on the k objec- 

tives in a sequential manner. Specification by the DMs of desired minimum or maximum levels 

of the Ic - 1 objectives appearing in the constraint set essentially results in a preferred solution 

[21,29]. Similarly, the concept of E-constraint can be extended to specify bounds on the deci- 

sion variables for most desired attainments. Thus, E-constraint is applicable to MLPPs through 

interactions with DMs, with the reference values given (e.g., PISs/NISs). 
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If DMs are dissatisfied with the current solution, the process will add an extra &-constraint re- 

lated to objectives or decisions, and solve the new problem. The results from different 

s-constraints will be trade-off with each other, and submit to DMs to ensure an acceptable 

result. Since the objectives and decisions are explicitly considered at the same time, the draw- 

back of previous approaches in not controlling both will be eliminated. Moreover, a promising 

result under a specific e-constraint can give us the idea about further improvement. Although 

there will be many cases directly enumerated and compared in the procedure, it is still better 

than some sophisticated trade-off techniques on objectives only, and fits into the characteristics 

of MLPPs. 

3. FUZZY APPROACH FOR IMPRECISE MLPPS 

After the acquisition of uncertain decision information is made, a new approach will be pro- 

posed for the imprecise MLPPs. In fact, the concepts of fuzzy programming and possibilistic 

programming have been provided to manage different characteristics of multilevel systems. In 

the following contents, two types of MLPPs are reviewed as an integrated MLPP system. 

3.1. MLPPs with Linear-Programming Type 

Compared to the crisp case, an imprecise bilevel programming problem with linear-program- 

ming type can be illustrated as follows: 

M,a;x fi(xi,xa) = ET,xi + &xz (upper level) (3) 

where x2 solves, 

MX;x $2(x1,x2) = &xi + z;T2x2 (lower level), 

st. (x1,x2) E Y = 
{ 

(x1,x2) 1 Aixi +Azxz < 6 and x1,x2 2 0 , 
> 

where Eii,&,&,C22 are the imprecise costs, and 6 is the imprecise resource. And Ai and A2 

are the imprecise technological parameters. 

As designed, the upper-level DM defines his/her objective and decisions with possible tolerances 

and other interactive parameters. This information then restricts the lower-level feasible space, 

and a new auxiliary problem is listed as follows: 

Max an 

~ d = yx + (1 - 7)(X1 + x2 -t . . . + &+2) 

(s+2) ’ 

s.t. lIfl(fl (4) = 
{ 

Vl (4 - fl- I 
Pi’ - h-1 1 

7-a 

2 (A + Xl), 

P,l(Xl) = 

{ 
[Xl - (XY - 41 

Pl 1 Ta > (A + X,)1, _ 
ktA(Xl) = 

i 

[(XY + P2) - XI] 

1 

Ta 
s 7 

pup2(f2(x)) = { y;;-$1 jra zt+A~IY 

Xf&Ll,i=1,2 )...) s+2 

61 > o!,l= 1,2,... , n (the number of constraints in Y) 

with the extra space for bl, ok2 > cr, k = 1 and 2 (the number of objectives) 

with the extra space for f3k2, 

fi(x) > &1,x1 2 EsI, or fi(x) 2 E2, (e-constraints if necessary) 

o, 7, A, xl, x2,. . . , &-+2r 61, @k2 E [o, 11, 
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where p1 and p2 are the two-side tolerances for decision vector x1 (including s elements) on 

LHS and RHS, respectively. The parameter ra describes the risk attitude of DMs, where T-a E 

{l/2,1,2}. In addition, ~1, ~2, and E, will be the extra attainments of fi, f2, and xi, respectively, 

for parametric variation. Furthermore, the imprecise range will be generated through possibilistic 

indices and represented by 61, 1 = 1,2, . . . ,n. And the maximization problem takes I&, Ic = 1 

and 2, where 812 = [fi - C, cJszJ]/[CJ c3sx, - C, c3sx:3] and 022 = [f2 - C, c33ql/[C3 c34xJ - 

c, c.734 

A compromise solution is reached when the upper and lower level DMs are satisfied with the 

above solution. Otherwise, the process needs to elicit new membership functions for the auxiliary 

level problem until a compromise to be understood. Combined with a set of control decisions 

and goals with tolerances, a new formulation is established. This expression can be easily solved 

by any mathematical programming code, e.g., [30]. 

3.2. MLPPs with Network-Flow Type 

Network flow is a special class of linear programming with integer flows. A general form of the 

network flow problem is minimum-cost flow (MCF) problem, which deals with broader types of 

problems, such as transportation, maximum flow, assignment, shortest path, and transshipment 

problems [31]. It is used to determine a least shipment cost of a commodity through a capacitated 

network in order to satisfy demands at certain nodes from available supplies at other nodes. Since 

cost and capacity parameters at each arc cannot be exactly estimated, an imprecise multilevel 

MCF problem, in comparison with a traditional MCF problem (321, can be formulated as 

(5) 

where x2 solves, 

(lower level) 

s.t. c xq - c x3$ = b(i), Vi E N, 

t~:(w)-l {j:(~,i)EAl 

LJ I xaj I k) 1 V (i, j) E A, xz3 L 0, and integer, V (i, j) E A, 

where J’ and j2 are two imprecise objective functions, Et:, Et;, E$, and E$? are imprecise costs, 

and itJ and i& symbolize the imprecise capacity with lower bound and upper bound of each 

arc. In addition, xX3 = (x&, x2) = C C x,~, {i, j} E A. Four numbers that represent the four 

corners of the trapezoidal shape describe these fuzzy parameters. 

Possibilistic linear programming with TFNs seems well fitted to any fuzzy programming prob- 

lem. However, it will have two shortcomings in dealing with network flows. Thus, we redefine 

the imprecise arc capacity as: cr(l,,z - 1,,i) + 1x31 2 xZj _ < uZj4 - cr(zl,jz - ~1) ‘d i and j with 

cut-off value o, where (12Ji,123z, ~~~1, ~~~2) are the four corners of capacity restriction [9]. The 

compensatory auxiliary problem of expression (5) is described as the following form. 

Max an 
c1 d = 7X + (1 - Y)(Xl + x2 + . . . + x8+2) 

(s+2) ’ 
(6) 

s.t. 
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Pf2 (f2(4) = 

i 

[f2”,,xJ] T” 

Lf2+ - f2-I I 

> (A + X2), 

X+X, 5 1, i = 1,2 ,..., s+2 

Bki 2 CX, k = 1 and 2 (the number of objectives) 

with the extra space for e&?,f’(x) > &1,x1 _> ~~1, or f2(x) > E2, 

(E-constraints, if necessary) 

Y, 4 Xl 1 x2, . . . , As+2 E [O, 111 

a(&,2 - 4,l) + lijl 5x23 - < ~~~4 - (~(14~2 - uyi),Vi and j, (constraint space) 

(6)(cont.) 

cc C,jlX,J 2 f1 - < ~~G,lXt,, and Bii 2 cr, (objective space) 

2 3 

0, Y, A, Al, x2,. . .1 

xz3 2 0 and integer, 

where pi and p2 are the two-side tolerances for decision vector xi (including s elements) on LHS 

and RHS, respectively. The parameter TU depicts the risk attitude of DMs, where TU E {l/2,1,2}. 

In addition, ~1, ~2, and &a will be the extra attainments of fl, f2, and xi, respectively, for 

parametric variation. And x,~ = (X,‘j, x,“,), and i = 1,. . . , m and j = 1,. . . , n. Accordingly, the 

minimization problem takes eki, k = 1 and 2, where 6’11 = [f’ -C, cj1x3]/[C3 c3zxc3 - C, c3ixJ] 

and 021 = [f2 - C, cj~z~l/[C~ ~~29 - C, ~~1~~1. 
This formulation can be easily solved through any mathematical programming code, e.g., 1301. 

4. AN INTERACTIVE PROCESS 
FOR IMPRECISE MLPPS 

All decision information is organized in logical order as the input for interaction. On the 

contrary, the output will be the temporary solution of a specified problem. The interactive 

process produces a series of dialog between DMs and analysts/machines to adjust the parameters 

of input and to generate the temporary results. Then the results are presented to DMs, and 

ask for trade-off among them. The process will be stopped until a compromise or satisfactory 

solution is acquired. Figure 2 illustrates the flowchart of the proposed approach. In detail, there 

are two interactive procedures for the imprecise MLPP: inside loop and outside loop. The former 

is major for the preference of the DM, realized by fuzzy membership functions reflecting goals 

and decisions attainments, risk attitude and compensation; the latter is for the imprecision of 

coefficients, described by four possibility indices or cut-off values. In the mean time, &-constraints 

are involved for interaction if DMs like to make a further improvement. The procedures of the 

approach are condensed as the following five steps. 

STEP 1. Set the initial decision information. Given the necessary decision information for start- 

ing the process, the information includes: reference values of PINs/NISs related to goals and 

decisions, the grade of compensation y, the parameter of risk-attitude TU, and a possibilistic 

index and/or a cut-off value cr. 

STEP 2. Solve the initial bilevel problems individually. The upper-level and lower-level DMs solve 

their problems independently. If DMs are satisfied with the solutions, a compromise solution of 

the system is obtained. Go to stop; otherwise, go to Step 3. 
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START 9 
Initialization of decision 
information. 

1. Solve the upper-level problems. 

2. Solve the lower-level problems. 

cision achieve- 

sation; and/or (4) 

1. The range of the decision 
information will be repre- 
sented by fuzzy numbers. 

2. Solve the BLPP through 
its auxiliary model. 

I 

Figure 2. A flow chart for the proposed interactive approach for integrated bilevel 
systems. 

STEP 3. Establish an auxiliary problem of lower levels. With the initial decision information and 

the solutions of two levels, the tolerance and other requirements of the upper level will transfer 

to the lower level, thus, establishing an auxiliary problem. After that, go to Step 4. 

STEP 4. Check the decentralized planning. Ask the DMs of both levels if they are satisfied with 

the solution of the previous problem. If yes, a compromise solution of the system is reached, and 

goes to the next step for adjusting imprecise range. Otherwise, change the membership functions 

related to goals and decisions achievements, risk attitude, and degree of compensation. In ad- 

dition, the E-constraints related to the objectives of both levels and decisions of the upper level 

will be combined for trade-off. Then go to Step 3. 

STEP 5. Modify the imprecise range. If the DMs are not satisfied with the imprecise range, 

choices of a possibilistic index and a cut-off value will be made to generate a new imprecise 

bilevel problem. Go to Step 2 and solve the new problem. Otherwise, a compromise solution is 

obtained, and then goes to stop. In addition, network-type problems have only one parameter, 

cut-off value, to be adjusted. 

To illustrate this approach, let us solve the following two examples. 
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Table 1. The compared results from different possibilistic indices. 

Exceed. Poss. Strict Exceed. Poss. Exceed. Necess. # Strict Exceed Necess 

Ly .5000000 .5000000 .4000000 .5000000 

knd .4753614 .4907555 4989722 .4999185 

Y .5000000 5000000 .5000000 5000000 

x 8523280 .ooooooo .9942292 .9992455 

Xl 1475123 9735465 .0053751 .ooooooo 

x2 .1476720 1 000000 0057708 .0007544 

x3 .ooooooo 9709862 0000000 .0010201 

fl 23.46625 19.10098 14.99406 11.07164 

f2 18 00117 18.37106 14.61517 13 29353 

Xl 11.06000 9 430000 7.210000 5.770000 

X2 1.891667 2.822024 2.269907 2 547812 

Note. 
1 These results are without considering risk attitudes and E-constramis 
2. # There 1s no feasible solution at o 1 0.5. 

Table 2. The compared results from different c-constraints (Example 1 with ex- 

ceedance possibility). 

Exceed. Poss. 
(Original Problem) fl L-5%1 f2 F-5%1 Xl [-5%] 

(Y .5000000 5000000 .4000000 .5000000 

i&d .4753614 4612924 .4753614 .4168945 

Y .5000000 5000000 5000000 5000000 

x .8523280 .ooooooo .ooooooo .ooooooo 

Xl .1475123 .9154264 .9998402 .8883504 

x2 .1476720 1.000000 1.000000 .6471370 

x3 .ooooooo .8523280 .8523280 .9658795 

fl 23.46625 21.48506 23.46625 20.84958 

f2 18.00117 18.00117 18.00117 20.39938 

Xl 11.06000 11 06000 1106000 10.33310 

X2 1.891667 1 891667 1.891667 3.199861 

Note 
1. [-5%] indicates a e-constramt bemg added with -5% of its original achievement 

Table 3. The compared results from different e-constramts (Example 1 with ex- 
ceedance necessity). 

Exceed. Necess. 
(Original Problem) 

a .4000000 

kind .4989722 

Y .5000000 

x .9942292 

Xl .0053751 

x2 .0057708 

J43 .ooooooo 

fl 14.99406 

f2 14.61517 

Xl 7.210000 

X2 2.269907 

fl [-5%] fi [-5%] Xl [-5%] 

.4000000 .4000000 .4000000 

.4904301 4910178 .4873892 

.5000000 5000000 .5000000 

0000000 .ooooooo 0000000 

9483514 .9999111 .9885714 

1.000000 1 000000 9445100 

.9942292 9461955 .9912536 

14.22527 14.99867 14.82857 

14.61517 13.90907 14.57143 

7.210000 7.21000 7.142857 

2.269907 2.26333 2.285714 

Note. 
1 [-5%] indicates a s-constraint being added with -5% of its original achievement. 
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Table 4. The compared results from different risk attitudes (Example 1 with ex- 

ceedance possibility). 

a 

/‘and .4753614 

“i .5000000 

x .8523280 

x1 .1475123 

x2 .1476720 

x3 .ooooooo 

fl 23.46625 

f2 18.00117 

Xl 11.06000 

52 1.891667 

Fun(.) 
(Exceed. Poss.) 

Fun( .)“.5 Fun(,)2 

.5000000 .5000000 

.4871894 .4543572 

.5000000 .5000000 

.0041143 .ooooooo 

.9958057 .9996805 

.9958856 1.000000 

.9191017 7264630 

23.46625 23.46625 

18.00117 18.00117 

11.06000 11.06000 

1.891667 1.891667 

Note. 
1. Fun(.) represents the original membership function, a linear case. 
2. Fun(.)0.5 indicates the original membership function with the power of 0.5, 

so as the function with the power of 2. 

Table 5. The compared results from different c-constraints (Example 
ceedance necessity). 

a 

kmd 

7 

x 

x1 

x2 

x3 

fl 

f2 

Xl 

x2 

fin(.) 
(Exceed. Necess.) 

.4000000 

.4989722 

.9942292 

.0053751 

.0057708 

.ooooooo 

14.99406 

14.61517 

7.210000 

2.269907 

.4000000 .4000000 

.4994854 .4979500 

.5000000 .5000000 

.9971104 .ooooooo 

.0026917 .9992088 

.0028895 .9999998 

.ooooooo .9884915 

14.99406 14.99407 

14.61517 14.61517 

7.210000 7.210000 

2.269907 2 269907 

Table 6. The parameters and structure of an imprecise bilevel MCF problem (Ex- 
ample 2 with g nodes and 11 arcs). 

(a) Arc information. 

Fun(.)O 5 

with ex- 

Arc No. 
lSt Objective 

Imprecise Cost 

1 (0.5,1 ,1.5,2 ) 

2 (0 ,O ,0.5,1 ) 

3 (5 76 ,7 38 ) 

4 (1.5,2 ,2.5,3 ) 

5 (0.5,1 ,1.5,2 ) 

6 (3 >4 ,5 36 ) 

7 (4 >5 96 77 ) 

8 (1.5,2,2.5,3.5) 

9 (6 ,7,8 >9 ) 

10 (7 78 ,9 ,lO ) 

11 (8 ,9 ,lO J1.5) 

Znd Objective 
Imprecise Time 

(2 2 J&3 ) 

(1 12 ,2.5,3 ) 
(5 ,6 37 ,g ) 

(2 ,2 ?3 >3 ) 

(1.2,2 ,2 ,2.5) 

(1.5,2 ,2 ,2.5) 

(6 97 77.538 ) 

(1 ,2 ,2.5,3 ) 

(1 ,2 ,2.5,3 ) 

(2 ,2.5,3 .3.5) 

(2 ,2.2,3 ,3.5) 

Fun(.)2 

Imprecise Capacity Note 

(0 ,O 29 ,ll ) x21 

(0 ,l 79 213 ) 223 

(0 ,O 9 ,ll ) X26 

(0 12 ,15 916 ) 214 

(0 90 ,5 19.5) x34 

(0 ,O ,lO ,12 ) x35 

(0 ,2 JOJ4.5) x47 

(0 30 ,20 ,22) x56 

(0 ,O 715 717 ) x57 

(0 21 ,lO ,12 ) x68 

(0 ,O ,15 ,165) 178 
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(b) Node information. 

Node No. 0 @ @ 0 Q Q) 8 @ 

Supply/Demand(-) 10 20 0 -5 0 0 -15 -10 

(c) The structure of the MCF problem. 

(+20) 3 (+O) 

2 6 

1 2 

(+1oj _:II 1 3 

8 10 

6 

J 5 

7 

4 

0 5 0 8 (-10) 

J) 11 

7 

(-5) C-15) 

Table 7. The compared results from different cut-off values (Example 2). 

Cut-Off Value Q 0.5 0.75 1.0 

Y .5000000 .5000000 .5000000 

hnd .4063796 .3411644 .2774995 

x .ooooooo .ooooooo 0000000 

x14 1.000000 .8000000 .6000000 

x35 1 .oooooo .8571429 .7142857 

x2 .9711400 .8932179 .7835498 

x3 .2798971 .1789541 .1221603 
fl 241.5000 255.0000 274.0000 

f2 206.6000 218.3750 225.0000 

114 10.00000 11.00000 12.00000 

x21 .ooooooo 1.000000 2.000000 

223 10.00000 10.00000 9.000000 

x26 10.00000 9.000000 9.000000 

x34 6.000000 5.000000 3.000000 

x35 4.000000 5.000000 6.000000 

x47 11.00000 11.00000 10.000000 

256 .ooooooo 1 .oooooo 1.000000 

x57 4.000000 4.000000 5.000000 

268 10.00000 10.00000 10.00000 

278 .ooooooo .ooooooo .ooooooo 

a .5000000 .7500000 1 .oooooo 

5. ILLUSTRATED EXAMPLES 

581 

Two types of the problems are illustrated here, i.e., a linear-programming type and a network- 
flow type of problems, as an integrated imprecise multilevel programming system. 

EXAMPLE 1. A trade-off MLPP between exports and imports with TFNs. Four numbers in the 

parentheses of the following problem figure out the imprecise parameters: 

M,“;“fr = (1.5,2,2,2.5)q + (-1.5, -1, -1, -0.5)~ (upper level) 

where 52 solves, 
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Table 8. The compared results from different s-constraints (Example 2) 

cx 

Y 

Pand 

x 
x14 

x35 

x2 

x3 

fl 

f2 

x14 

x21 

223 

X26 

534 

x35 

x47 

x56 

x57 

268 

x78 

Ori inal 
Pro lem % 

.50000 

.50000 

.40637 

.ooooo 

1.00000 

1.00000 

.97114 

.27989 

241.5000 

206.6000 

10.0000 

.ooooo 

10.0000 

10.0000 

6.00000 

4.00000 

11.0000 

.ooooo 

4.00000 

10.0000 

.ooooo 

fl[f5%1 

.50000 

.50000 

.35812 

.ooooo 

1 .ooooo 

.57142 

.88889 

.40462 

255.7500 

192.0500 

10.0000 

.ooooo 

10.0000 

10.0000 

3.00000 

7.00000 

8.00000 

.ooooo 

7.0000 

10.0000 

.ooooo 

.50000 

.50000 

.35812 

.ooooo 

1 .ooooo 

.57142 

.88889 

.40462 

255.7500 

192.0500 

10.0000 

.ooooo 

10.0000 

10.0000 

3.00000 

7.00000 

8.0000 

.ooooo 

7.00000 

10.0000 

.ooooo 

a4[+5%] 

.50000 

.50000 

.37915 

.ooooo 

.80000 

1.00000 

.96104 

.27218 

243.2500 

207.5000 

11.0000 

1 .ooooo 

9.00000 

10.0000 

5.00000 

4.00000 

11.0000 

.ooooo 

4.00000 

10.0000 

.ooooo 

.50000 

.50000 

.37336 

.ooooo 

1.00000 

.75000 

.99856 

.23823 

236.7500 

211.4500 

10.0000 

.ooooo 

10.0000 

10.0000 

7.00000 

3.00000 

12.0000 

.ooooo 

3.00000 

10.0000 

.ooooo 

Note 

1. [-5%] indicates a c-constraint being added with -5% of its original achievement. 

Table 9. The compared results from different risk attitudes (Example 2). 

f2[-5%/o] x351-5%1 

fin(.) 
(Original Problem) Fun(.)“.5 Fun(.)2 

Q .5000000 .5000000 .5000000 

Y .5000000 .5000000 .5000000 

kand .4063796 .4393147 .3824878 

x .ooooooo .0058383 .0598331 

x14 1.000000 .9941616 .9401668 

x35 1.000000 .9941616 .9401668 

x2 .9711400 .9796260 .9401668 

x3 .2798971 .5232147 .0000689 

fl 241.5000 241.5000 236.5000 

f2 206.6000 206.6000 210.7000n 

514 10.00000 10.00000 10.00000 

x21 .ooooooo .ooooooo .ooooooo 

X23 10.00000 10.00000 11.00000 

X26 10.00000 10.00000 9.000000 

x34 6.000000 6.000000 7.000000 

x35 4.000000 4.000000 4.000000 

x47 11.00000 11.00000 12.000000 

156 .ooooooo .ooooooo 1.000000 

x57 4.000000 4.000000 3.000000 

x68 10.00000 10.00000 10.00000 

x78 .ooooooo .ooooooo .ooooooo 

Note. 

1. Fun(.) represents the original membership function, a linear case. 
2. Fun(.)o.5 indicates the original membership function with the power of 0.5, so as the function 

with the power of 2. 
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%” 
s.t. 

fi = (0.8,1,1,1.4)2r + (1.5, 1.5,2,2.5)x2 (lower level) 

(2.5,3,3,3.5)x1 + (-5.5, -5, -5, -4.5)~ < (10,25,25,26), 

(2.8,3,3.2,3.5)~ + (-1.5, -1, -1, -0.5)~~ 5 (15,20,25,35), 

(2.75,3,3.2,3.2)x1 + (0.8,1,1,1.3)zZ < (20,25,25,42), 

(2.5,3,3,3.5)x1 + (3.6,4,4,4.4)x2 5 (30,32,35,50), 

(0.8,1,1,1.2)~ + (2.6,3,3,3.4)x2 5 (14,15,16,25), 

21752 > 0. 

The possible range for each objective can be established as: fr E [0,23.47] and f2 E [0,21.12]. 

The first level control decision ~1 is around 11.6 with negative-sided and positive-sided toler- 

ances 2.06 and 1.94, respectively. With many decision situations, we choose some of them listed 

in Tables l-5 for comparison purposes. Table 1 shows the results from four possibilistic indices. 

Tables 2 and 3 exhibit the different results of E-constraints of objectives and decision under ex- 

ceedance possibility and exceedance necessity, respectively. Tables 4 and 5 illustrate the different 

results related to risk attitude under exceedance possibility and exceedance necessity, respectively. 

All above results are with the degree of compensation y = 0.5 and cut-off value cy = 0.5, except 

the third index, with Q = 0.4. The DMs can choose one compromise solution among them, or 

make a further search for other desired solutions. 

EXAMPLE 2. A bilevel imprecise MCF problem with eight nodes and 11 arcs with TFNs (as 

shown in Figure 6 with data and structure). 

The bilevel network-flow problem is requested to minimize the total cost f1 for the upper-level 

DM and to minimize the passing time f2 for the lower-level DM. Based on the information of 

PISS and NISs, the possible range for each objective can be established as f1 E [236.5, 409.75) and 

f2 E [176.6, 293.251. A ssume that the upper-level DM has two control variables, the first control 

decision 214 is around 10 within the interval [4,15]. The second control decision ~35 is around 

four within the interval [0, 111. With many decision situations, we choose some of them listed in 

Tables 7-9 for comparison. Table 7 shows the results under three cut-off values, 0.5, 0.75, and 1.0, 

respectively. Table 8 delineates the different results of E-constraints of objectives and decisions. 

Table 9 displays the different results related to risk attitude. The degree of compensation y = 0.5 

is for Tables 7-9, and cut-off value GE = 0.5 is for Tables 7 and 8. From these listed results, 

the DMs can choose one compromise solution, or make a further enumeration for examining a 

compromise solution. 

6. CONCLUDING REMARKS 

The proposed interactive approach gets ride of the complexity and indeed makes trade-off 

among objectives and decisions of both levels of MLPPs. It can improve the flexibility and 

robustness of the original fuzzy approach of MLPPs. And the compromise solution of imprecise 

MLPP is obtainable with a few iterations under supervised search. Compared to simulation, our 

proposed approach is rather efficient and would make DMs more confident about the results in a 

dynamic environment. In addition, the presented algorithm can be directly extended to multilevel 

cases without increasing their computational complexity. Furthermore, linear-programming type 

and network-flow type of MLPPs are integrated as a unified approach in the paper. 

In the proposed interactive approach, only &-constraint is explicitly taken as a trade-off of 

objectives and decisions to fulfill the characteristics of MLPPs. More sophisticated interactive 

techniques will be expected in the future. Nevertheless, their computational burden will make 

the problem difficult to handle. Furthermore, under a strict case with more E-constraints (over- 

achievement requirement) or less possibilistic measure (strict exceedance necessity), infeasible 
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solutions will be generated. In such a case, DMs must modify his understandings and preference 

to reach a compromise solution. 

The sketch of risk attitude will elicit nonlinear membership functions that depend on the 

meanings of a particular situation. Thus, many other shapes would be possible for MLPPs after 

an empirical test. These nonlinear shapes can be transferred to linear shapes through piecewise 

approximation (331. Yet, extra work is necessary. 

The proposed man-machine interactive procedure can be implemented into decision support 

systems where all choices and judgments are fulfilled in a computerized procedure (see [14]). It 

would be more efficient if the procedure can be executed on a computer network with graphic in- 

terface [34]. In addition, other nontraditional approaches for MLPPs 1351 are also a new direction 

for future study, with computational efficiency under verification. 
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